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Abstract: As a new evolution optimization, artificial fish school algorithm has the features of high 
convergence speed and good performance on solving combinatorial optimization. To improve the 
optimization performance of the artificial fish school algorithm, a simplified artificial fish school 
algorithm is proposed. In the forage process, artificial fish can directly move to the optimal position in 
its vision distance to fasten the search speed. In the clustering behaviors, the center of the neighbor 
domain can be replaced by the center of the whole fish school. In the clustering process, the optimal 
position is replaced by optimal position of the fish school. Therefore, the computing process can 
proceed only by the distance of the center and optimal position of the fish school. The distance of the 
neighbor distance and current fish school, the utmost value of the neighbor and the distance of 
optimal artificial fish and all the fish neighbor domain can be simplified to shorten the running time. 
Simulation results show that the SAFSA has good performance on convergence speed, running time 
and optimization ability to high dimension function. 

1. Introduction 
Optimization algorithms have been widely applied to solve a lot of numerical optimization 

problems which originating from the real world problems. For the real-parameter numerical global 
optimization problems, heuristic and metaheuristic algorithms have already expressed excellent 
search performance [1]. And most of them are widely used in the real-life engineering optimization 
[2-4]. Classical meta-heuristics are described as follows, such as genetic algorithm [5], simulated 
annealing [6], differential evolution [7,8], particle swarm optimization [9], artificial bee colony [10], 
and other typical hybrid evolution computation algorithm. 

Artificial fish school algorithm (AFSA) also is an evolutionary computational model which is 
based on swarm intelligence. AFSA is developed by [11] who has been inspired by the research of the 
artificial livings. Similar to PSO [9], AFSA is also an optimizer based on population. The system is 
initialized firstly in a set of randomly generated potential solutions, and then performs the search for 
the optimum one iteratively. Whereas the AFSA does not possess the crossover and mutation 
processes used in GAs [12], it finds the optimum solution by swarms following the best fishes [13, 
14]. Compared to GAs, the AFSA has much more profound intelligent background and could be 
performed more easily. Based on its advantages, the AFSA is not only suitable for science research, 
but also engineering applications, in the fields of evolutionary computing, optimization and many 
others [15-19]. In recent years there have been a lot of reported works focused on the AFSA which 
has been applied widely in the function optimization [18], artificial neural network training [20], 
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fuzzy control [21] and some other fields. Some improved AFSA algorithms have also been developed. 
Similar hybrid AFSA algorithms are proposed by introducing new operations into AFSA systems. 
After a hybrid probability is assigned to each fish, the algorithm selects a certain number of fishes into 
a pool according to the hybrid probabilities at each stage of iteration. The fishes in the pool are 
randomly separated into school. Each school reproduces two children by operation mechanism for the 
fish school. Then the children are used to replace their parents of the previous fishes to keep the 
number of schools unchanged. 

Certain amount of researches and practitioners have devoted in the domain of parameters, 
neighbor structure and behavior adjustment of artificial fish school algorithm to propose the novel 
improved artificial fish school algorithm. Literature [13] adopted adjustable parameters to enhance 
the lower searching precision and convergence speed in later evolution process for basic AFSA. 
Literature [22] proposed an improved AFSA to enable the algorithm having high stability and global 
performance. From the literatures on AFSA, we can see that most of the research focusing on the 
application of AFSA to certain problem. The basic theory of the AFSA need put more energy on it. 
The research on the algorithm itself and optimization still be in experiment process. Meanwhile, for 
AFSA, it has the shortcoming of the weak balance of exploitation and exploration ability, of the 
randomly searching ability in the lateness evolution process, of the lower searching precision, to 
affect the quality and efficiency.  

In this paper, an improved mechanism for basic AFSA has been implemented to simplify the 
mechanism of the fish school in searching process, and to improve the searching precision and 
convergence speed. It can be proved by the experiments that the algorithm improves the efficiency of 
tradition AFSA algorithm and enhance the success rate to seek the optimal solution. The paper is 
organized as follows. Section 2 provides the mechanism of the SAFSA. In section 3, Convergence 
analysis of the SAFSA is proposed in searching process Simulation result is given in section 4. 
Finally, Section 5 concludes the paper. 

2. A Simplified Artificial Fish School Optimization Algorithm (SAFSA) 
2.1 The Mechanism of the SAFSA 

In artificial fish school algorithm, the model of the artificial can be depicted by the following class. 
Class Artificial_fish { 

Various: 
float AF_X[n];          //AF’s position 
float AF_step;           //the distance that AF can moue for each step 
float AF_visual;        //the visual diatance of AF 
float try_number;      //attempt time in the behavior of prey 
float AF_delta;          //the condition of jamming 
Functions: 
float AF_foodconsistence( ); //the food consistence of AF’s current position 
float AF_move( );           //AF move to the next position 
float AF_follow( );          //the behavior of follow 
float AF_prey( );             //the behavior of prey 
float AF_swarm( );          //the behavior of swarm 
float AF_evaluate( );       //evaluate and select the behavior 
float AF_init( );               //to initialize the AF 
Aritificial_fish( ); 
Virtual～Aritificial_fish( ); 

}; 
By the class description, the information and the behaviors are encapsulated in one certain class 

and its behaviors can be observed by the partners. In the forage process, artificial fish can directly 
move to the optimal position in its vision distance to fasten the search speed. In the clustering 
behaviors, the center of the neighbor domain can be replaced by the center of the whole fish school. In 
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the clustering process, the optimal position was replaced by optimal position of the fish school. Hence, 
the computing process can proceed only by the distance of the center and optimal position of the 
school. The distance of the neighbor distance and current fish school, the utmost value of the neighbor 
and the distance of optimal artificial fish and all the fish of neighbor domain can be simplified to 
shorten the running time. 

With the above melioration, the basic artificial fish can be improved as: 

c i max i
i p

c i max i

X X X XX X Step Step
X X X X

− −
= + × + ×

− −   
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where, 
cX  — the center of the whole artificial fish, 

maxX  — the optimal position of the whole artificial fish finding in current iteration, 

pX  — the position of the artificial fish after forage operation, 
t  — current iteration number, 

maxT  — the maximum iteration mumber, 

maxX  — the maximum value of the searching range, 
s  — an integer greater than 1, [1,30]s∈ . 
In Eq. 1, the first component is the result of foraging operation of artificial fish. It is represents that 

the artificial fish have confirmation and confidence to the forage operation of the school. The second 
component is the clustering behaviors which represents that the artificial fish moves forward along 
the center. The third part is the chasing behaviors which represents that the fish move toward the 
global optimal position. The equation combines the forage behaviors, clustering behaviors and 
chasing behavior to adjust the position and status of the next step according to the result of forage, the 
center of the school and the optimal position of the school to fasten the searching speed and shorten 
the running time. Meanwhile, the random move behaviors were included in the forage behaviors to 
guarantee the ability of the escaping the local optimum in the running process. 

In general situation, the initial value of the Visual  was set as / 4maxX , Step  as / 8Visaul , 
0.001minVisual = , 0.0002minStep = . The visual and the step consist of three components. The Visual  

and the Step  kept as the maximum value at the beginning of the running of the algorithm. The value 
diminished gradually till minimum. The algorithm balanced global searching ability and local 
searching ability effectively with the high convergence speed and accuracy simultaneously. 

2.2 Description of the SAFSA Algorithm 
Step 1. Initialize the population of the artificial fish M , visual  and the step , crowded degree δ , 

maximum number of try iteration _try number , the maximum number of iteration. 
Step 2. Calculate the fitness of each candidate and compare with the value posted on announce 

boarder. If the value is better than that on the boarder, then replace the value previously posted on the 
boarder with the current calculation result. 

Step 3. Calculate the visual and step with Eq. 2. 
Step 4. The forage behavior for each candidate. 
Step 5. The candidates update the position according to Eq. 1. 
Step 6. Verify the terminated conditions (the predetermined iteration number or the fitness 

unchanged for predetermined iteration). If the condition was satisfied, then the optimal result, which 
includes the status of artificial fish and the function fitness, will be posted and the algorithm will be 
terminated. Otherwise, the program converted to Step 2. 
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3. Convergence Analysis of the SAFSA 
In the basic artificial fish school algorithm, the forage behavior is the fundament of the 

convergence of the algorithm; clustering behaviors strengthen the stability and the global 
performance of the algorithm; chasing behavior enhances the rapidity and global performance of the 
algorithm; the evaluation selection for the behavior provide the guarantee for the convergence speed 
and stability. 

3.1 Rudimentary knowledge 

Definition 1. P  is a k k×  transition probability matrix ,{ , , 1, 2, , }i jP i j k=  . The stochastic 
process with one finite state space 1 2{ , , , }kS s s s=   is called as Markov chains which has a state of 
time homogeneous for transition probability matrix P . If n∀  , 1, 2, ,i j k=  , 

0 1 1, , , {1,2, , }ni i i k− ∈  , then: 

0 1 11 0 1 1

1
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( | , , , , )
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i j
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                                                                (3) 

Definition 2. 1 2,s s S∀ ∈ , if 

( | ) 0m n j m iP X s X s+ = = >                                                                                                                (4) 

then for state space 1 2( , , , )kS s s s=  , Markov chains which has a state of timehomogeneous with 
the transition probability matrix P is irreducible. The following equation is: 

If Markov chains 0 1( , , )X X   is a Markov chains with a state of timehomogeneous and irreducible, 
then: 

.( | ) ( ) 0n
m n j m i i jP X s X s P+ = = = >                                                                                                  (5) 

Definition 3. is S∀ ∈ , if 

.( ) gcd{ 1: ( ) 0} 1n
i i id s n P= ≥ > = ,                                                                                                 (6) 

then Markov chains 0 1( , , )X X   is an nonperiodic Markov chains. 

1 2gcd{ , , }a a   is the greatest common measure for 1 2, ,a a   the period of the states is S∈  is the 
greatest common measure for the set of the transfer number which represents the probability of the 
Markov chains returning to the state of is . 

Lemma 1. Strict positive Markov chains is the irreducible and nonperiodic Markov chain 
Lemma 2. Let P′  is a n  rank reducible random matrix. In other word, by same column transfer 

and row transfer, 
0C

P
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                                                                       (7) 

where 'P ∞  is a stable random matrix, and ' '1P p∞ ∞′= , '0 p p∞′ = . 'P ∞  is an unique and has no 
relations with the initiation status. 'P ∞  satisfies ' 0ip ∞ > , 1 i m≤ ≤ , and ' 0ip ∞ = , m i n< ≤ . 
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3.2 Analysis for state space for SAFSA 

If representing the ix  in 1 2( , , , )nX x x x=   of artificial fish with M  binary string, that is 
quantizing [ , ]i ix x  with 2M  discrete value, then the precision can be expressed as ( ) / 2M

i ix xε = − . 
So the convergence of the artificial fish can be analyzed with real number coding. Let required 
precision as ε , the searching space is set as discrete space with the size of 

1
( ) /n

i ii
s x x ε

=
= −∏ . 

The fitness of each candidate X S∈  is ( )Fitness X . Let { ( ) | }F Fitness X X S= ∈ , it is obviously 
that F S≤ , so Y  can be expressed as 1 2{ , , , }FF F F F=  , with 1 2 FF F F> > > . the set S  can 
be divided into certain non void subset according to the fitness of candidate, where 

{ | ( ) }i iS X X S and Fitness X F= ∈ =                                                                                            (8) 

{ }
11

; , 1, 2, , ; , ;
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= ≠ ∅ ∀ ∈ ∩ =∅ ∀ ≠ =∑ 



                                             (9) 

To each random i iX S∈ , j jX S∈ , it is certain that 

( ) ( ),
( ) ( ),
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i j
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                                                                                             (10) 

It is obviously that 1F  is the global optimal solution *F , and all the candidate with fitness *F  are 
included in subset 1S . 

In the evolution process of artificial fish algorithm, the number of artificial fish 
1 2{ , , , }Np X X X=   in the school is stable and unchanged. Let P  as the aggregation of all the 

school, because it is allowable that the candidates are same in the school, so the number of school 
could be 

1S N
P

N
 + − 

=  
 

                                                                                                                        (11) 

To measure the performance of the school, define the food density of the position of the school as 

( ) max{ ( ) | 1, 2, , }iFitness p f X i N= =                                                                                        (12) 

Then 1( ) ,FF Fitness p F p P≤ ≤ ∀ ∈ , so we can divide set P  as non void subset { }iP , 

{ | ( ) }, 1, 2, ,i iP p p P and Fitness p F i F= ∈ = =                                                                      (13) 
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where 1P  includes all the school with fitness *F . 
Let ijP  as the jth school in , 1, 2, , , 1, 2, ,i iP i F j P= =  . in the process of the evolution, the 

transfer from ijP  to klP  can be express as ij klP P→ . Let .ij klp  as the transfer probability from ijP  to klP , 

.ij kp  as the transfer probability from ijP  to random school of kP , .i kp  as the random school of iP  to 
random school of kP ,  it is obviously that 

. . . . .
1 1

, 1,
kP F

ij k ij kl ij k i k ij k
l k

p p p p p
= =

= = ≥∑ ∑                                                                                             (15) 
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3.3 Proof of the convergence feature of SAFSA 
Definition 4. An evolution algorithm converges to global optimum, iff 

*lim { ( ) } 1t

t
Pr Fitness P F

→∞
= =                                                                                                       (16) 

where, Pr  is the probability, tP  is the tth population. 
Theorem 1. The searching process of artificial fish school algorithm is a timehomogeneous 

Markov chain. 
Proof. According to the running mechanism of artificial fish school algorithm, its searching 

domain is located in the population space S  with limited space. And in the searching process, the 
emergent of the next generation 1tp +  depends only on current population, and have no connections 
with previous generation 1 2 1 0( , , , , )t tp p p p− −  . Hence, the condition probability from one certain 
population tp  to another population 1tp +  will not be affected by the initiation change. Form the 
definition of Markov chain, the searching process has the feature of Markov property, in other words, 
it has no afterward effects and satisfies the criterion of Markov property. So the searching process of 
the artificial fish school optimization can be depicted by timehomogeneous Markov chain with finite 
state. 

Theorem2. In the artificial fish school algorithm, , {1,2, , }i k F∀ ∈  , 

.

.

0
 

0
i k

i k
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p k i

> ≤
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Proof. * * * * *
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It is supposed that under the evolution mechanism, ijP  transfer to klP . If ijP  is the tth generations, 

then klP  is the ( )t l+ -th generation, marked them with tP  and 1tP +  respectively. 
In the basic artificial fish school algorithm, the elite strategy was adopted by posting the optimal 

status of the candidate on the broad. According to the above definition and hypothesis, the optimal 
artificial fish of tP  is *X , which was saved on _Bulletin Board , that is *_Bulletin Board X= , the 
form of population tP  will not be altered. For tP , after forage, clustering, chasing and random 
behavior, the next generation 1tP +  can be evolved. Compare optimal artificial fish X ′  with the value 
of _Bulletin Board , if the fitness of X ′  is better than _Bulletin Board , then _Bulletin Board X= ; 
otherwise keep the value on the _Bulletin Board . Put the _Bulletin Board  on the utmost left of the 
population, however, the _Bulletin Board  will not participant in the evolution process, so 
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In each iterations of the artificial fish school algorithm, it is by forage, clustering, chasing and 
random behavior to find optimum. The principal of the behavior can select according to the fastest 
evolution speed and keep the progress value. If the behavior is selected as chasing, the clustering 
behavior will be selected next until no progress has been made on the chasing behavior; the forage 
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behavior will be selected if the previous two behaviors have no progress. The random behavior will 
be exerted if no progress has been made on the chasing, clustering and forage. The situation can be 
analyzed into three cases. 

(1) Let the probability of chasing behavior is 0fallowp ≥ . if *X  select the chasing behavior, then 

0fallowp > , and if the position of the optimal neighbor have high food density and uncrowned, *X  
will move towards the position of the optimal neighbor which have high food density in the latter 
position X ′ . And if ., 0i kk i p∀ >< , then *( ) ( )Fitness X Fitness X≥′ . 

(2) Let the probability of clustering behavior 0schoolp ≥ . If *X  select the clustering behavior, then 
0schoolp > , and if the food density of the neighbor center is not crowded, *X  will move towards 

center of neighbor. The food density of the position which was moved is higher than that of moved 
before, then ., 0i kk i p∀ >< , *( ) ( )Fitness X Fitness X≥′ . 

(3) Let the probability of the forage is 1prey school fallowp p p= − − . The artificial fish *X  explore the 
random selection status in its searching space. There are two situations: ① the food density of the 
position X ′  which is the status of selected is higher than that of *X , and the probability of the cases 
is ppyp , if ., 0i kk i p∀ >< , then *( ) ( )Fitness X Fitness X≥′ . ② the food density of the position X ′  
which is the status of selected is lower than that of *X , and the probability of the case is 

1pn ppyp p= − , then the candidate will re-select the position and will try certain numbers 

_try number  with the probability of _( )pn try numberp . If the conditions still can not be satisfied, the 
candidate will select the random behavior. Let the probability of random move is prandom, the 
probability of the food density for moved afterward higher than move before is 

( ) _1/ 2 (1 ( ) ) 0pn try number
better randomp p p= ⋅ − × ≥ ; and if 0betterp ≥ , the proof is finished; if 0betterp = , it 

is mean that the artificial fish reach the local optimum. By controlling the number of _try number , 
the artificial fish school can keep the diversity of the school, guarantee the population move randomly, 
and escape the local optimum. 

Form the basic artificial fish school algorithm, it is concluded that the total probability of selecting 
one of the behaviors is 1, that is 1prey school fallowp p p+ + = , integrate the above three cases, we can see 
that k i∀ < , . 0i kp > , so the proposition is correct. 

The theorem states that the population with lower fitness can move to the population with same 
fitness or even higher fitness, and can not move from population with higher fitness to lower fitness. 
So, once the algorithm moves into set P1, it can not move out of the evolution process. 

Theorem3. The basic artificial fish school algorithm has global convergence property. 
Proof. According to the conclusion of theorem1, each iP , 1, 2, ,i F=   can be view as one 

certain status of finite Markov chains. According to the conclusion of theorem 2, the transfer matrix 
of the Markov chains can be expressed as 

1.1 1.2

2.1 2.2

.1 .2 .

0
0 0

F F F F

p p
p p C

P
R T

p p p

 
 

  = =       

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   



,                                                                                 (18) 

where, 2.1 3.1 .1( ) 0T
FR p p p= … > , 0T ≠ , 1.1( ) (1) 0C p= = ≠ . 

According to Lemma 2, 

328



' ' 1

0

0
0

lim lim
0

k

k k
i k i kk k

i

C
C

P P
T RC T R

∞
∞ −

− ∞→∞ →∞

=

 
  = = =   
  

 
∑

,                                                                      (19) 

where, 1C∞ = , (11 1)TR∞ = … . So, 'P ∞  is a stable random matrix, and '

1 0 0
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 
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. 

From the proof process, we can see that the probability of the candidate stay on non global 
optimum is approaching to 0. In other words, when the evolution time goes to ∞ , the algorithm will 
converge to optimum with probability of 1. 

According to Definition 4, *lim Pr{ ( ) } 1t

t
Fitness P F

→∞
= = . The proposition is proofed. 

4. Simulation Results and Analysis 
4.1 Set up the experiment 

To testify the performance of improved artificial fish school algorithm, the following 5 benchmark 
function was used as the test cases. The simulation program tools is C++, CPU of computer is P4 
(1.7GHz). 

( ) 2
1 if x x= ∑  

( ) 2
2

1 1

1 cos 1
4000

n n
i

i
i i

xf x x
i= =

 = − + 
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( ) 2
5

1 1

n i

i
i j

f x x
= =

 
=  
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∑ ∑

 
Table 1. Parameters of test functions 

Function  Dimension  Searching range Optimum 
value precision 

f1 10 [-100, 100] 0 10-5 
f2 10 [-600, 600] 0 10-2 
f3 10 [-100, 100] 0 10 
f4 10 [-100, 100] 0 10 
f5 10 [-100, 100] 0 10-5 

The parameters of the algorithm in the test cases are as follows: 
15population = , _ 5try number = , 11δ = , for f1, f3, and f5, 25Visual = , 3Step = , for f2, 

150Visual = , 18Step = , for f4, 2.5Visual = , 0.3Step = . In SAFSA, 0.001minVisual = , 
0.0002minStep = , 3s = , Visual  and Step  were adjusted according to Eq. 2. The maximum iteration 

is 1000. the parameters and objective precision were set as Table 1. The test cases used AFSA and 
SAFSA as the computing tools to calculate the minimum objective, the test results was the average 
fitness by 50 independent running. 
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Performance evaluation was adopted the following methods. (1) Evaluate the convergence speed 
and precision under the constant evolution iteration number. (2) Evaluate the iteration number to meet 
the predefined precision under the pre-stated precision. 

4.2 Simulation results and analysis 
The predefined evolution iteration number is set as 1000. The algorithm was calculated 

independently for 50 times. The results are shown in Table 2 and Fig. 1 to Fig. 5. The average 
optimization results and the best optimization obtained by SAFSA are better than that of AFSA, and 
have a high convergence speed and lower average running time. The average evolution curves of f1 - 
f5 are shown in Fig.1 to Fig. 5. In each figure, the vertical ordinate is expressed as the general 
logarithm of the average function, while evolution generation is shown in horizontal ordinate. The 
optimization results of AFSA and SAFSA are shown as dotted line and solid line respectively. 

From the figure, the convergence speed and optimization precision are accelerated after 400 
generations. The convergence precision and convergence speed of SAFSA have a significant 
improvement than that of AFSA. 

Table 2. The results of two optimization algorithm 

function algorithm average minimum maximum Running time 

f1 
AFSA 0.549313 0.190388 1.707638 4.54 

SAFSA 1.15×10-8 5.04×10-9 1.81×10-8 0.36 

f2 
AFSA 0.720781 0.452412 6.563051 5.41 

SAFSA 0.118239 0.000766 0.477634 0.51 

f3 
AFSA 31291.71 54.36419 1049063.9 5.89 

SAFSA 4.098545 0.883168 7.822047 0.31 

f4 
AFSA 137.3255 86.72703 183.5952 5.15 

SAFSA 8.183427 1.989964 24.87529 0.44 

f5 
AFSA 847.1508 4.123204 5343.838 6.22 

SAFSA 0.000006 0.000003 0.000012 0.37 

 
Figure 1. The convergence curve of f1 

 
Figure 2. The convergence curve of f2 
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Figure 3. The convergence curve of f3 

 
Figure 4. The convergence curve of f4 

 
Figure 5. The convergence curve of f5 

Table 3. The evolution iteration number under predefined convergence precision 

Function Algorithm Success rate（%） Average 
running time 

Minimum 
iteration 

 

Maximum 
iteration 

 
 f1 

AFSA 0 — — — 
SAFSA 100 606 589 630 

f2 
AFSA 0 — — — 

SAFSA 100 157 30 464 

f3 
AFSA 0 — — — 

SAFSA 98 421 365 557 

f4 
AFSA 0 — — — 

SAFSA 82 267 76 560 

f5 
AFSA 0 — — — 

SAFSA 100 631 617 647 
The evolution iterations number under predefined convergence precision. The iteration number for 

the test function running independently is shown on Table 3. “—” represents that the iteration number 
greater than 1000. Success rate is the running number which achieve the convergence precise divided 
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by the total test time. 
From Table 3, we can see that: (1) Success rate of AFSA to the five test function is zero, and AFSA 

have no effect to functions with high dimension. (2) The success rate of SAFSA is 100% to f1, f2 and 
f5; the success rate to f3 and f4 are 98% and 82%, respectively. (3) The average iteration number is in 
650. From the experiment, we can draw the conclusion that the SAFSA has the good performance of 
stable convergence property. 

5. Conclusion 
SAFSA can implement three behaviors in one certain iteration on chasing forage results, the center 

of population position and the optimum position of the whole population to guarantee the algorithm 
move to the global optimum position. Furthermore, the random move behavior was incorporated into 
forage behavior to avoid the candidate trapping into local optimum, and strengthen the global 
searching ability of the algorithm. Moreover, the dynamic adjustment of the visual and step of 
artificial fish is introduced to balance the global exploration and local exploitation to improve the 
adaptability and the optimization precision. Simulation results show that the SAFSA has good 
performance on convergence speed, running time and optimization ability to high dimension 
function. 
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